

 Eberhard Haug © 2020. All rights reserved.
 s'AVR - Manual, Revision 2.22

s'AVR -LITE

Structured Assembly Programming for Atmel® AVR®

Atmel® and AVR® are registered trademarks of Atmel Corporation
Windows® is a registered trademark of Microsoft Corporation

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 1

Contents

Structured Programming .. 2
The gist of s'AVR in a nutshell.. 2
What s'AVR is intended to do... 3
What s'AVR doesn’t do .. 4
s'AVR Installation and Uninstallation .. 4
How to use s'AVR .. 5
Embedding s'AVR Atmel

®
 Studio.. 6

Even more elegant ... 8
Control Structure Directives implemented in s'AVR.. 9
Description of Control Structure Directives... 10

General Syntax Rules .. 10
Addressing Modes ... 10
Control Structure Range by Extensions .m and .s.. 11
Simple and therefore not 100% consistent ... 12
Skip and Jump Instructions.. 12
Predefined Status Bits = all Bits of the AVR Status Register ... 13
Negations .. 13

EXIT and EXITIF, common for leaving s'AVR Structures ... 15
Description of Conditions and Relations .. 15
Register Bits and Port Bits ... 15
Releations.. 16

IF – [THEN] – ELSEIF – [THEN] – ELSE – ENDI, Test for alternate Branches 17
LOOP – ENDL, endless Loop... 19
Jump List.. 20
WHILE – ENDW, Test at the Beginning of the Loop .. 20

Any Objections?... 21
Always efficient Code from s'AVR Version 2.. 22

REPEAT – UNTIL, test at the End of the Loop... 22
REPEAT vs. WHILE, an interesting Programming Hint .. 23
FOR – ENDF, Loop with initialized Loop Counter and Decrement Steps of 1........................... 24
s'AVR Options.. 26

Option "keep s'AVR statements in the output file".. 26
Option "keep warnings in the output file" ... 26
Option "keep hints in the output file" .. 26
Options for jump range = "Default Structure Segment Ranges" ... 26
Option "Label Prefix".. 26

Collision with conditional and other Assembler Directives .. 26
Collision with Assembler Macros .. 27
Comments.. 28
Addresses, Labels.. 28
Multiple s'AVR Statements in a single Line... 28
Some basic Syntax Rules... 29

In addition for s'AVR .. 29
Command Line Interface .. 30

Command Line Call ... 30
Command Line Syntax... 31
Command Line Call per Atmel

®
 Studio .. 31

Linux .. 32
Error Messages.. 33
Outlook... 33

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 2

Structured Programming

Firstly control structures should not be confused with conditional assembly. Control
structures given by s'AVR und s'AVR-Lite

1 provide directives for structured programming
offering the following benefits:

 Structured programming in AVR assembler environment
 Simplified program development and debugging
 Extensively improved program readability and documentation

 Shorter program design cycles and improved productivity
 Improved program reliability and maintenance
 More fun writing AVR assembler programs.

For speed and memory sensitive applications the alternate usage of high level
languages like C normally is excluded for compact single-chip microcontrollers like the
smaller Atmel AVR devices.

s'AVR is a perfect alternate solution as it combines some advantages of high level
languages and all advantages of the AVR assembly language. s'AVR provides
directives for implementation of various branching and looping tasks commonly found
in programming.

Depending on selected Structure Segment Ranges (from s'AVR 2.x), control structures
provided by s'AVR do affect code efficiency little

2
 or not at all. That means computing

power and memory utilization are equivalent to pure AVR assembler programming, or
can show even better results - depending on the software engineer's skills!

Using s'AVR all assembly language facilities are still conserved as all instructions other
than s'AVR directives per definition are regular AVR assembly instructions.

The gist of s'AVR in a nutshell:

All instructions in a s'AVR source code program (*.s or *.savr)

other than s'AVR directives are regular AVR assembly instructions!

This message understood = s'AVR understood!

Therefore even existing pure AVR assembler programs could be extended afterwards

3

by s'AVR directives to get structured AVR source code, but still keeping all advantages
of the AVR assembly language.

After compiling the s'AVR based source code a "flat" AVR assembly source program is
provided which can be used to assemble, debug and program the given AVR device
using the known AVR design tools, including AVR

®
 Studio.

1 Within this manual s'AVR always includes s'AVR-Lite unless any restrictions are specified.
2 Due to the AVR instruction set (missing appropriate skip instructions which refer to the status register and branch instructions
which cover a wider address range).
3 Using the given method initial tests have been done to proof s'AVR.
However, writing s'AVR based source code from scratch is much easier than converting pure AVR assembly source code to s'AVR.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 3

When writing structured s'AVR programs explicit jumps could be omitted, but in certain
situations, however, avoiding jumps will result in more confusion than using them.

Therefore s'AVR offers a unique feature even handling such a situation. On the other
hand for purposes of learning structured programming, avoiding jumps will force the
mind to exercise the structured mentality.

Compared to high level languages s'AVR directives are far less complex, thus much
easier to use.

What s'AVR is intended to do

s'AVR (running under all current Windows
®
 versions

4
 and Linux) is a precompiler

translating directives for structured programming into assembly source code for the
Atmel

®
 8-bit AVR microcontroller family.

Amongst the s'AVR statements any regular AVR assembly statement sequences can be
placed (typically for the actual data manipulation and subroutine calls, s'AVR even
doesn’t touch those).

Of course, for nesting structures any number of additional s'AVR directives (and AVR
assembly instructions) can be used, as long as the program memory of the given AVR
microcontroller is sufficient.

The assembly source code generated by s'AVR can be used for simulating and
debugging (for example using Atmel Studio or any other AVR development tools). For
source level debugging the original s'AVR statements normally stay as comments within
the generated *.asm file.

Optionally, however, the comments can also be removed from the output file. It is also
possible to remove s'AVR warnings and s'AVR hints from the output file.

Finally the code generated by s'AVR must be assembled by any Atmel 8-bit AVR
compatible assembler into final AVR object code.

A very essential feature of s'AVR is the exclusive use of the AVR registers specified
within the s'AVR directives.

No other registers are employed or modified by s'AVR (except, of course, the program
counter and occasionally the status register).

The AVR stack is not used either by s'AVR, which means that the AVR program
designer has full and exclusive control over all AVR registers.
He even is forced to do so (like with every assembler program).

All s'AVR structures can be nested to any depth - just limited by the program memory of
the AVR microcontroller being used.

4
 All versions from Windows® 98SE through Windows®10 should work. Under Linux s'AVR can be used when combined with WINE.

Important!

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 4

As s'AVR is not using the AVR stack for return addresses, any jumps could be done to
any location of the program, even into other structures

5
. The AVR stack is 100%

available for regular subroutine calls and push/pop instructions.

Depending on the method of writing the code, s'AVR should show similar code
efficiency compared to pure AVR assembly code, but offer much better readability,
better documented code, easier debugging etc. and finally more fun writing successful
AVR assembler programs quicker and without hurdles.

What s'AVR doesn’t do

s'AVR does not generate any AVR object or binary code directly.
Therefore it’s called a pre-compiler.

As s'AVR does not know about any absolute addresses it cannot check address
boundary violations among others.

In addition s'AVR cannot check whether data defined in the source code is within certain
limits, for example if the ±2k word range of the RJMP instruction is exceeded. This also
has to be checked by the assembler itself.

No extra declarations are required for s'AVR and s'AVR does not analyse any (for
example those being declared for the AVR assembler).

s'AVR Installation and Uninstallation

s'AVR is a very compact stand-alone executable Windows
®
 program which does not

need any installation. The *.exe file simply is copied to any arbitrary (preferably
separate) directory. If wanted, the file name can be changed.

If you like to "uninstall" s'AVR simply erase the given *.exe file.
Manuals (PDF-format) are available in English and German language.

The s'AVR Help menue gives a very compact overview of the s'AVR Control Structure
Directives and Ranges, "Bits and Pieces" and Command Line Parameters (in English):

5
 However, such jumps are not recommended. Especially jumps into and out from subroutines always want to be well-considered.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 5

How to use s'AVR

• Write your application source code using any preferred text editor taking care of
the syntax described in both the AVR assembler manual, the present s'AVR
documentation and the s'AVR Help menue. The file extension of your source code
should read ".s", for example my_source_file.s. Optionaly ".savr" is
accepted, see later in this manual.

• Start s'AVR like any Windows

®
 program. After selecting any s'AVR compile options,

now you can open your *.s file through the program menu and compile it. The
generated output file (now being flat AVR assembly source code without any
structures) will show the extension ".asm".

Be careful: If any file in the same directory is having the same file name as the source
file and its file extensioin is *.asm, it will be replaced without any warning!

Additional *.s files can be compiled one after another

6
 without leaving s'AVR.

A status line will ask you to wait for a short moment if your s'AVR file is quite big or your
computer is very slow.

When finished, the s'AVR status line will show the number of errors/warnings, if any.

The generated AVR assembly source file (for example my_source_file.asm) now
can be loaded by any AVR tools, assembled, programmed into AVR and debugged.
During these sessions s'AVR needs not to be quit.

If any errors/warnings occurred during compilation they will be shown within the *.asm
output file, referring to the line numbers of the original *.s source file.

Error messages in the *.asm output file are not shown as comments but as .ERROR
lines (including an error text) to indicate AVRASM2 to stop the assembly (and prevent
additional assembly error messages).

From s'AVR version 2.1 a changeable Label Prefix

7
 from _Axxxx through _Zxxxx

allows to link up to 26 different s'AVR source files to a common AVR program without
any label conflicts.

s'AVR also has a command line interface (all versions) to allow calling s'AVR from other
programs (like Atmel Studio) and passing the various compile options to s'AVR too.

A simple example for a command line causing s'AVR to compile my_source_file.s

generating an output file my_source_file.asm by using the default s'AVR options:

s'AVR.exe /my_source_file.s

The same interface is used when s'AVR is called by other tools like Atmel Studio.
Then even any error messages are fed back to Atmel Studio so the affected error
line(s) of my_source_file.asm can be reached simply by a mouse click.

6 A later release will compile all *.s files in a directory at once (generating unique labels across all generated *.asm files).
7 Label Prefix _Lxxxx is default.

Important!

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 6

However, detected errors must be corrected in the source file, not in the output file!

Details how to use the command line interface and various options see next section
and at the end of this manual, please.

Note:

Although s'AVR is not case sensitive, for better readability all s'AVR directives/
statements within this manual are shown in upper case letters (like the AVR assembly
code generated by s'AVR).

But AVR assembly lines being part of examples are shown in lower case letters and in
Courier font.

Embedding s'AVR in Atmel
®
 Studio

First you create your structured assembly source program My_sAVR_Program with
the file extension .s (default setting for the Atmel Studio editor, so Visual Assist will be
supported) either in advance using the text editor of your choice or after the project
has already been set up under Studio.

Since normally an AVR assembly source file main.asm is created for a new Studio
assembler project, you must first rename

8
 it within the 'Solution Explorer' to

My_sAVR_Program.asm using the right mouse button and then assign it to the
assembler using 'Set As EntryFile' because otherwise the *.asm file will not be
reloaded automatically by the Studio Editor after compiling the *.s file by s'AVR!

Then you can open additional text files within Studio for structured s'AVR source
programs, either the already existing existing source file My_sAVR_Program.s or any
new assembly files with the file extension

9
 *.s).

Now all source files (for example My_sAVR_Program.s written with s'AVR syntax and

the "flat" AVR assembly source program My_sAVR_Program.asm compiled by s'AVR)
could be edited side by side with the Atmel Studio editor - but only the
My_sAVR_Program.s file should be edited (not so the *.asm file, as this will be

automatically updated by s'AVR)!

The *.s file must be saved

10
 before calling s'AVR, otherwise the last saved file will be

compiled and you might wonder why the assembled and linked AVR code is not up-to-
date

11
!

Normally My_sAVR_Program.asm (automatically updated after every s'AVR call) is
only used to be assembled or (rarely) to check the "flat" assembly code generated by
s'AVR and, if necessary, any generated error messages.

Above all, you should not make any changes in the *.asm file!

8 main.asm (only) cannot be opened and saved by another program (like s'AVR) at the same time.
9 File extensions other than *.asm and *.s are not supported by Visual Assist.
10 Newer versions of Atmel Studio indicate files not being saved after any changes by a '*' at the end of the file name.
11

 If necessary it could be verified checking date and time of the *.asm file.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 7

Finally, you will also want to embed s'AVR directly into the Atmel Studio.

For this purpose, under 'Tools' the submenu 'External Tools' is used to set up 'Title'
and 'Command', depending on the location of the s'AVR Program.

Initially

12
 no specification for 'Arguments' is required:

After Apply/OK, you can now edit/view the s'AVR source code as well as the assembly
source code with the Studio Editor and directly call

13
 s'AVR under 'Tools'.

After compiling (as quick as a flash!) by s'AVR normally

14
 the generated assembly

source code My_sAVR_Program.asm is automatically updated within Atmel Studio
and can now be assembled from Studio directly by means of 'Build' or 'Rebuild' and (if
error-free) via 'Device Programming' programmed into the program memory of the
AVR microcontroller.

Normally you edit your source code only in the *.s window(s), click (after saving) the
s'AVR window or 'External Tools' to start the pre-compiler and then go directly to 'Build'.

Again: The *.asm window is only touched for troubleshooting or simulating/debugging!

12 If 'Arguments' are passed to s'AVR, the s'AVR windows will not open at all (only if 'Arguments' are not passed correctly).
13 When updating Atmel Studio 7.0 software, in one case the 'External Tools' setup has disappeared, so it had to be created again.
14 If the *.asm file in the 'Solution Explorer' is marked by 'Set As Entry File'.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 8

Even more elegant

After some experience dealing with s'AVR finally you will also specify 'Arguments' under
'External Tools', possibly even several arguments for different label prefixes

15
, so you

do not need the s'AVR window anymore (but then no help menu is available anymore)
and a few extra mouse clicks can be omitted:

Different label prefixes are required if the AVR program consists of several individual
s'AVR source programs, which are compiled separately and are then linked by
.INCLUDE by the AVR assembler.

Again the important note:

s'AVR overwrites a file with the same source file name and the *.asm extension in the
same directory (possibly from a previous compilation, but hopefully not a self-written
assembly source program) without any warnings!

Only that way unhindered working with s'AVR is possible.

15 Label Prefixes _Axxxx though _Zxxxx are supported from s'AVR version 2.1.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 9

Control Structure Directives implemented in s'AVR

IF condition [THEN] ; test for first branch
 StatementSequence
ELSEIF condition [THEN] ; additional branch test(s), multiple and optional
 StatementSequence
ELSE ; last branch, optional
 StatementSequence
ENDI ; end of IF structure
--
LOOP ; start of endless loop
 StatementSequence ; exit LOOP by EXIT, EXITIF, assembly jump
 ; or branch, RET, interrupt or AVR reset only
ENDL ; end of LOOP structure
--
WHILE condition ; test at start of the loop
 StatementSequence
ENDW ; end of WHILE loop
--
REPEAT ; start of the REPEAT loop
 StatementSequence
UNTIL condition ; test at end of the loop
--
FOR RegisterAssign ; FOR loop with initialized loop counter
 StatementSequence
ENDF ; decrement and test for loop counter = zero
--
EXIT ; leave one structure level unconditionally

EXITIF condition ; conditional exit from actual structure (one level)

EXITIF condition TO label ; conditional jump out of a structure

Notes:

• StatementSequence stands for any number of AVR assembly instructions and/or s'AVR statements, therefore s'AVR
statements can be nested without limits (as long as enough memory is available).

• condition stands for compare tests (al least one AVR register, register/port bit tests or status register flag tests).

• RegisterAssign assigns the number of loop cycles. The specified register can be loaded already or the assignment
is part of the statement. The FOR loop register can be loaded with an immediate literal or the contents of another
AVR register.

• EXIT and EXITIF are exits to just one lower structure level.

• EXITIF–TO is an exception allowing conditional jumps even into foreign structures.
Unconditional jumps simply can be done using the assembly instruction RJMP or JMP (not for older ATtiny).

• label is any valid AVR address (not local) somewhere in the s'AVR program (take care when leaving subroutines).

• s'AVR is using the specified AVR registers only (in most cases the status register too).

• s'AVR directives are not case sensitive.
Therefore the directives can be written in lower or upper case (or even both).

• From s'AVR 2.0 certain directives allow range extensions .m and .s.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 10

Description of Control Structure Directives

General syntax rules

For simplicity the s'AVR syntax does not use the ‘full-size’ structures like IF–THEN–
ELSEIF–THEN–ELSE–ENDIF, WHILE–DO–ENDWHILE statements etc.

THEN and DO are not needed (THEN is optional, DO is not allowed) and all ENDs are
using just the first character of the initiator only, like IF–ENDI, WHILE–ENDW, LOOP–
ENDL, FOR–ENDF.

REPEAT ends differently, using UNTIL for the final test.

All s'AVR structures can be left by EXIT and EXITIF by just one structure level.

EXITIF got an optional TO for jumping out of a structure conditionally.

As mentioned in the "Notes" above, s'AVR statements may be written in upper or lower
case (even mixed). In this manual, s'AVR statements and assembly instructions
generated by s'AVR are always written in capital letters to distinguish assembly
instructions being part of the s'AVR source program (which are always written in
lowercase letters and Courier font).

For some very basic syntax rules please also read the notes at the end of this
document.

It was the basic intention to allow writing structured s'AVR source code quite simply and clearly
to get reliable AVR assembly code without headache!

Adressing Modes

Since the AVR microcontrollers allow operations with registers, register bits, port bits
and constants resulting in different assembly instructions, it must be possible to
differentiate between those by the s'AVR statements.

Without special marking of the operands, registers are assumed or the AVR assembler
must check for correctness.

Register bits are specified in the form Register,BitPosition and constants
("immediate") are always preceded by a # character, even if they are symbols!

Complete port bytes must first be loaded into an AVR register (which is an AVR
property) by means of an assembly instruction (IN), before structured statements can
be executed.

Only port bits can be checked directly using the form %Port,BitPosition.

The % character allows s'AVR to distinguish between AVR registers and AVR I/O ports.

No spaces are allowed after # and %, just optionally before BitPosition.
Examples will follow.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 11

Control Structure Range by Extensions .m and .s

Originally, s'AVR (in particular all versions 1.x) strictly generated "no pain" AVR code
mainly using BRcc/RJMP instructions, which did not always result in best code
efficiency, but because of ±2k words of address range normally did not require any
intervention by hand within the s'AVR structures.

A more efficient AVR code would predominantly use BRcc instructions (not combined
with RJMP). However, for most efficient code the maximum address range is only
+64/-63 instruction words, which is not sufficient for larger program structures.

As of s'AVR 2.0, the s'AVR source program can optionally be compiled with the previous
"no pain" or the new "efficient" option. However, in order to avoid problems with a too
small address range, especially with the "efficient" option, the s'AVR directives can be
supplemented with range extension .m (for "medium") to force BRcc being combined
with RJMP in order to get a wider address range of ±2k words compared to the
"efficient" code, thus avoiding error messages by the assembler.

Conversely, the range extension .s (for "small") for the "no pain" compiler option
(namely, for source programs originally written for s'AVR 1.x) allows the enforcement of
short jumps per BRcc and skip instructions.

For the following s'AVR statements, the range extensions .m and .s are accepted:

 IF, ELSEIF, EXITIF, REPEAT, WHILE and ENDF.

For these statements, a range extension .m is allowed (with a "hint" in the output file),
but is redundant

16
:

 ELSE, EXIT, ENDW and ENDL.

And for these statements, no range extension is permitted (would result in an error
message), since elsewhere in the structure the range of the jump will be determined:

 FOR, LOOP, UNTIL, ENDI, THEN and TO.

The s'AVR Help menue is showing a summary regarding the structure ranges:

16 Since anyway AVR code is generated for medium range by BRcc/RJMP or even just by RJMP.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 12

Simple and therefore not 100% consistent

Actually, the range extensions are normally not part of the IF, ELSEIF, EXITIF and
WHILE statements, where you would normally expect size extensions (for example
IF.w for a 16-bit comparison) and the range extension instead should be attached to
THEN, DO and TO.

Due to the AVR instruction set (unlike the instruction set of 68000 and other μP/μC),
"efficient" AVR code is very different compared to "no pain" AVR code.

Unfortunately, a simple 1-pass compiler (such as s'AVR) must know the wanted range
while generating the appropriate code, so a range attached to identifiers THEN, DO
and TO would already be too late.

Therefore, in s'AVR, for the sake of simplicity the range extension has been defined to
be placed at the specified practical places instead of the logically correct ones.

Skip and Jump Instructions

Unfortunately, AVR (compared to other microcontrollers) offers only a few skip
instructions which directly relate to the status register. This makes a universal
procedure much more complicated for the (pre-) compiler, since instead of simple skip
instructions, branch instructions need to be used unnecessarily in many places to skip
a subsequent RJMP instruction, because it was the goal that the assembly source
code generated by s'AVR can always be assembled directly by the AVR assembler
without any intervention by the program designer.

The only restriction for the LITE version is due to the maximum range of RJMP, which
is ±2k word addresses. That is, the s'AVR structures in the LITE version are allowed to
sweep a maximum range of 2k word addresses, which should normally be sufficient.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 13

Predefined Status Bits = all Bits of the AVR Status Register
17

Z ; Zero bit set
NZ ; Zero bit clear

C ; Carry bit set
NC ; Carry bit clear

H ; Half/Digit Carry set
NH ; Half/Digit Carry clear

S ; Sign bit set, S = N ⊕ V (Negative EXOR Overflow)
NS ; Sign bit clear

V ; V bit set (2's Complement Overflow)
NV ; V bit clear

N ; N bit set (Negative)
NN ; N bit clear

T ; Transfer bit set
NT ; Transfer bit clear

I ; Interrupt activated
NI ; Interrupt deactivated

Negations

NOT ; logical negation
! ; logical negation

~ ; bitwise negation, 1's complement (same as assembly instruction COM)

Important notes regarding status bits:

For ease of use those status bits are – like every s'AVR directive – reserved s'AVR
keywords and should not be used within the AVR assembler program as identifiers
(labels, registers and constants).

Instead of NZ, NC, etc., equivalent NOT Z, NOT C or even !Z, !C can be used.

Although AVRASM2 itself also defines Z, C, H, S, V, N and T, it does not bother in this
context.

17 T / NT and I / NI are supported from s'AVR 1.1.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 14

EXIT and EXITIF, common for leaving s'AVR Structures
Description of Conditions and Relations

Syntax:

EXIT ; exit from actual structure unconditionally

EXITIF condition ; exit from actual structure conditionally

EXITIF condition TO label ; jump out of a structure conditionally

Both the unconditional EXIT and the conditional EXITIF can be used to leave the
actual s'AVR structure stepping one (and only one) structure level back.

If you need to leave more structure levels (up or down) for certain reasons just use a
regular assembly jump (RJMP or JMP [not for older ATtiny]), which is not strict
structured programming but in certain situations jumping would offer more program
clarity.

But be careful when jumping out of assembly subroutines

18
 (which would be

unstructured): Your AVR stack might get muddled up!

EXITIF allows testing for a certain condition, which could be a certain content of a
register or a certain bit status of a register or a port. Optionally EXITIF allows jumping
out of s'AVR structures using EXITIF–TO, which is also quite handy, as we will see.

Special status bits can be used directly like EXITIF Z, EXITIF NZ, and so on, as
described above under "Predefined Status Bits".

Unfortunately, since the AVR status register is in the I/O range >31 (see next section),
its bits can not be used in the form

19
 %SREG,StatusBit, which would make the

generated AVR code simpler and more efficient in many cases.

Register Bits and Port Bits

Generally spoken, for bit queries Register,BitPosition or %Port,BitPosition the
syntax reads as follows:

Register, BitPosition Both Register and BitPosition may be symbols,
BitPosition may also be a decimal value 0-7.

%Port, BitPosition Both %Port and BitPosition may be symbols,

BitPosition may also be a decimal value 0-7.

18 Certainly complete s'AVR structures (even nested ones) can be used within assembly subroutines.
19 Even though the s'AVR syntax would accept it, not so does the AVR assembler.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 15

Note:

A single symbol cannot be used to combine Register/Port and BitPosition as the s'AVR
syntax for the status flag test requires the comma between Register/Port and
BitPosition (exceptions are only the predefined status flags like Z, NZ etc.).

The reason is, that the generated code must be different for registers, constants,
register bits and port bits.

According to AVRASM2 syntax, for Register or %Port only the AVR registers or ports
0-31 are allowed (after assembly) and for BitPosition only the values 0-7, which is
partially checked by s'AVR as far as possible. AVRASM2 checks for other permissions
as usual.

In order to check contents or bits of ports with a port address >31, the wanted port
must first be copied into one of the AVR registers 0-31.

This is also true (unfortunately) for the status register SREG (see above), if you do not
want to use the predefined status bits!

Attention: Behind the % sign and in front of the comma, there must be no spaces

20
 in

order to obtain a clear assignment of the individual symbols!

On the other hand, s'AVR leaves enough freedom regarding spaces and TABs.

Examples for checking the status:

EXITIF Reg, 3 ; EXIT s'AVR structure if bit 3 of register Reg is set

The NOT directive or simply the ! sign allow to check register and port bits which are
not set (clear):

EXITIF !r12, 5 ; EXIT if bit 5 of register 12 is clear
EXITIF NOT r12,5 ; same as EXITIF !r12,5
EXITIF !%portd, strobe ; EXIT if bit 'strobe' of port D is clear

EXITIF Z ; EXIT if Z bit is set
EXITIF NC ; EXIT if C bit is clear
EXITIF ! C ; same as EXITIF NC
EXITIF NOT C ; same as EXITIF NC

Multiple usage of NOT and ! are allowed and will be handled correctly:

EXITIF ! NOT !NC ; same as EXITIF C

Attention: For a negated logical test do not use the bitwise negation '~' !

Of course, it is allowed - and sometimes useful - to use one and the same EXITIF
condition multiple times in multiple nested structures in order to avoid to leave these
structures using an unstructured jump (RJMP, JMP or EXITIF-TO) over several levels.

20 From s'AVR 2.23 spaces are accepted after the comma.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 16

Originally there was the idea of offering EXITs over more than one structure level, but
the implementation would have been much more complex and using a regular
assembly jump (RJMP or JMP) is doing almost the same job much more easily and
even more clearly. But to get optimized code and to prevent any assembly headache,
the unique code saving EXITIF–TO directive was created, which is equal to a
conditional jump.

An example for a jump table using EXITIF–TO see description of the LOOP directive.

Now there is no longer a need to do any assembly comparisons and you no longer
need to worry about these!

But: EXITIF–TO (same for EXIT and EXITIF) must be placed within s'AVR structures
(LOOP–ENDL, e.g.) otherwise this statement would not be recognized by s'AVR and
an unbalanced structure error would occur during compilation.

Relations

More general are those conditions, where a relation between two items is tested
(unsigned 8-bit tests!):

Syntax (example using EXITIF):

EXITIF a Relation b ; EXIT s'AVR structure by one level if 'a Relation b' is true

Relations can also be part of IF, ELSEIF, WHILE and UNTIL statements.

Relation is any of the following characters or character strings:

== equal
<> not equal (>< is not allowed and results in an error)
< less than
<= less or equal
> greater than
>= greater or equal

Both a and b can be any AVR register described by an identifier or a register number
(R17, e.g.). b in addition also can be an immediate literal using the # delimiter.

Then, however, only the AVR registers 16-31 are supported for comparisons with a
literal (an AVR property). Otherwise two AVR registers must be compared instead.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 17

Attention using relations:

• Errors concerning invalid AVR registers are partially detected by s'AVR, but at the

latest by the AVR assembler during assembly.

• Due to the 8-bit unsigned comparisons, a comparison to >0xff can not be
performed.

• Comparing for 'greater than' with the constant #0xff results in an assembler error.

• Equally (meaningfully) a comparison to <0 is not possible (both with a register with
content 0 and with a constant #0).

• For the mentioned error cases, the results of such relations are always (correctly)
false, independent of the value of the operand a during runtime.

• The assembly code generated by s'AVR shows some subtleties of the different
comparisons (looking at them once in a while is worthwhile).

• To compare two signed values (<127) with each other via s'AVR condition, you can
increase both values by an assembly instruction by an offset of 128 or subtract
-128 before the comparison

21
.

IF – [THEN] – ELSEIF – [THEN] – ELSE – ENDI, Test for alternate Branches

This more complex statement is the very common way of finding decisions for certain
branches.

Syntax:

IF condition1 [THEN] ; initial test, branch if false
 StatementSequence
ELSEIF condition2 [THEN] ; optional 2

nd
 test, branch if false

 StatementSequence
ELSEIF conditionN [THEN] ; optional more tests
 StatementSequence
ELSE ; optional last (default) branch without test
 StatementSequence ; no more other ELSEIF can follow now
ENDI ; end of IF structure

IF and the optional ELSEIF (which can be used as often as needed) are followed by
the condition to be checked. ELSE is the last (or default) branch without testing for any
condition. No additional ELSEIF is allowed after ELSE.

Condition is exactly the same as described at EXITIF, thus a status bit or a relation.

The EXIT and EXITIF statements could be used to leave the IF structure.

EXITIF–TO would be the non-structured method leaving an IF structure conditionally to
any defined destination within the s'AVR program.

21 For the registers R16..R31 instruction SUBI Reg,-128 can be used. An ADDI instruction does not exist with AVR.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 18

In some cases the EXITIF–TO method can contribute greatly to the clarity of the
program, but should be used with caution, especially if it involves a "direct" EXIT from
an assembly subroutine.

THEN can be used optionally after IF and ELSEIF (without any effect, it generates no
extra code).

Examples:

IF C ; branch to ELSEIF if carry bit is clear
 StatementSequence ; any assembly and/or s'AVR statements
ELSEIF %pinb,3 ; else if port B, bit 3 is clear branch to ELSE
 StatementSequence ; more assembly and/or s'AVR statements
ELSE
 StatementSequence ; these are the statements the program
 ; is executing if no other condition is true
 EXITIF Z ; exit the IF structure if Z bit is set
 StatementSequence ; any assembly and/or s'AVR statements
ENDI ; end of IF structure reached

As the current version of s'AVR at the moment does not support a SWITCH-CASE
directive, the IF directive can be used instead, offering even more flexibility as every
case can test different conditions:

IF case1
 StatementsCase1
ELSEIF case2
 StatementsCase2
ELSEIF caseN
 StatementsCaseN
ELSE
 StatementsCaseDefault
ENDI

case1, case2 and caseN must be any conditions/relations as described above.

Of course, here too in the various StatementsCaseX additional s'AVR statements
including EXIT and EXITIF can be included.

Because of completely new tests for every case some additional AVR code is needed
for the IF based tests compared to a true SWITCH–CASE directive.
However, in the IF structure, the conditions are independent of each other.

Another solution would be using successive EXITIF–TO statements, as will be shown
in the next chapter.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 19

LOOP – ENDL, endless Loop

This is the simplest structure repeating the loop until any break occurs. Any EXIT or
EXITIF directive could do a break. Or an assembly jump or branch, an AVR interrupt or
a reset would break the loop. In any other situation the loop would never end.

LOOP-ENDL often encloses the main program of a microcontroller application (after
the usual initialization routines).

Then for s'AVR-LITE the main program can only be a maximum of 2k words

22
.

The workaround may be to create a main loop without LOOP-ENDL, but via loop label
and JMP command (if supported by the AVR μC being used). However, this should be
rare, since called subroutines are always outside of such a main LOOP-ENDL and
therefore not adversely affect the jump range.

Syntax:

LOOP ; start of endless loop
 StatementSequence ; exit LOOP by EXIT, EXITIF, JMP, BRcc, RET,
 ; RETI, an AVR interrupt or an AVR reset only
ENDL ; end of LOOP

Examples:

LOOP
 StatementSequence
 EXITIF C ; exit 1

st
 LOOP if carry bit set

 StatementSequence
 LOOP ; nested loop
 StatementSequence
 EXITIF !r16,1 ; exit 2

nd
 LOOP if register 16 bit 1 is clear

 StatementSequence
 ENDL ; end of 2

nd
 LOOP

 StatementSequence
ENDL ; end of 1

st
 LOOP

LOOP ; the smallest possible s'AVR program!
ENDL ; wait for interrupt or reset

There is a little pitfall using EXIT. Don’t write such s'AVR code as shown in the example
below

23
, as this IF structure wouldn’t show any effect at all:

LOOP
 StatementSequence
 IF Z EXIT ; the EXIT will leave the IF structure only,
 ENDI ; not the LOOP structure!!
 StatementSequence
ENDL ; will loop forever if no other break happens

22 Limited due to the maximum possible RJMP range of ±2k words.
23 Even the syntax for this very compact code is perfect.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 20

To solve this situation simply use EXITIF:

LOOP
 StatementSequence
 EXITIF Z ; now LOOP will be left if the Z bit is set
 StatementSequence
ENDL

Jump List

The usage of EXITIF-TO within a LOOP structure is shown here as a good example of
a jump list

24
 saving AVR code:

LOOP ; any structure needed to use EXITIF-TO
 ; no extra AVR code generated at this point
 EXITIF cond1 TO label1
 EXITIF cond2 TO label2
 EXITIF condN TO labelN
 jmp DefaultLabel ; assembly jump to DefaultLabel

ENDL ; never looped back in this example

Note: The jump destination addresses label1/2/N and DefaultLabel will be placed somewhere in the s'AVR

source code, but they should by no means follow any s'AVR statements in the same line, otherwise these

addresses/instructions will not be recognized and s'AVR will claim unbalanced structures.

WHILE – ENDW, Test at the Beginning of the Loop

Before the loop will start a test for a certain condition is done. If the loop is passed
once it starts at the beginning of the loop doing the same test again. If the condition is
false the WHILE loop is completely skipped.

Syntax:

WHILE condition ; test at start of WHILE loop
 StatementSequence
ENDW ; end of WHILE loop

Example:

 in r17,portd ; copy port D to register r17

WHILE r17 <> #0 ; as long as r17 <> 0
 out portb,r17 ; copy register r17 to port B

 StatementSequence ; other assembly or s'AVR statements
 in r17,portd ; copy port D to register r17

ENDW

24

 In contrast to an even more compact jump table, where the conditions are successive integers.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 21

If you analyze the generated AVR assembly code, in this case you will see that s'AVR is
checking the s'AVR source code for literals being a constant with the value of zero

25
 and

finally optimized code using the TST instruction will be generated if the test is for '=='
or '<>' (which works for all AVR registers, including registers 0 through 15):

 in r17,portd ; copy port D to register r17

 ;01// WHILE r17 <> #0 ; as long as r17 <> 0
_L1:

 TST r17

 BRNE _L2

 RJMP _L3

_L2:

 out portb,r17 ; copy register r17 to port B

 StatementSequence ; other assembly or s'AVR statements
 in r17,portd ; copy port D to register r17
 ;01// ENDW
 RJMP _L1

_L3:

Remarks:

• In this example, the s'AVR options "no pain" and "keep s'AVR statements in the output file" are used:
After the first ";" (comment character), first the current structure level "01" is listed, followed by "//"

(something distinctive) and the original s'AVR statement including any original comment of the s'AVR
source line.

• Displaying the structure level by using "; 01//" etc. makes both debugging and trouble-shooting a

little easier, especially when nesting several similar s'AVR statements (each with its individual
structure level).

Any Objections?

Looking closer at the generated "no pain" assembly code, one could argue that the
RJMP instruction can be completely eliminated at this point, as instead of:

 BRNE _L2

 RJMP _L3

one could smarter program as follows (of course AVR assembly code automatically
generated by the precompiler):

 BREQ _L3

But this would have the serious disadvantage that in a slightly more complex program,
the jump range for BREQ to the address _L3 is greater than the maximum allowable
range of the AVR branch instructions of only 63 words.

Therefore, s'AVR basically uses branch instructions and (if possible) skip instructions in
the "no pain" compiling option to skip the RJMP command, which is ultimately
responsible for the "long" jump (in the example to the end of the above WHILE loop).

Thus, the very small range of the AVR branch instructions in the generated "no pain"
assembly code never becomes a problem, rarely the RJMP limit, namely, if a s'AVR
structure covers an address range of more than ±2k words.

25

 Only immediate literals like #0, #$0, #$00, #0x0, #0x00, #0b0, #0b00, #0b000 und #0b0000 are checked.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 22

This compromise on RJMP instead of one of the more efficient BRcc instructions is not
really optimal, but it's frustration-free, just "no pain".

The same applies to other s'AVR structures.

Voilà - always efficient Code from s'AVR Version 2!

Even if the benefit in program memory and execution speed may not be that extreme,
s'AVR 2.0 now gives the user the choice between "no pain" and "efficient" code, either
default for the entire s'AVR program or even individually per structure as compiled here
for the above WHILE example by using structure range .s:

 in r17,portd ; copy port D to register r17

 ;01// WHILE.s r17 <> #0 ; as long as r17 <> 0
_L1:

 TST r17

 BREQ _L3

 out portb,r17 ; copy register r17 to port B

 StatementSequence ; other assembly or s'AVR statements
 in r17,portd ; copy port D to register r17
 ;01// ENDW
 RJMP _L1

_L3:

Conversely, it is possible to enforce the "no pain" code for individual s'AVR structures by
structure range .m, provided that "efficient" is selected as the default range option.

REPEAT – UNTIL, test at the End of the Loop

In this case the loop is started and a certain condition is tested for when reaching the
end of the loop. If the condition is false the loop is started again until the condition is
finally met.

Syntax:

REPEAT ; start of REPEAT loop
 StatementSequence
UNTIL condition ; test at end of the loop

Example (here compiled using label prefix '_Mxxxx' and option 'no pain'):

REPEAT ; loop ...
 rcall get_character ; ... to read characters to register 'char'

UNTIL char <> #blank ; but skip all blanks

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 23

Generated code:

 ;01// REPEAT ; loop ...
_M1:

 rcall get_character ; ... to read characters to register 'char'
 ;01// UNTIL char <> #blank ; but skip all blanks
 CPI char,blank

 BRNE _M2

 RJMP _M1

_M2:

An interesting Programming Hint:

Compared to WHILE–ENDW the REPEAT–UNTIL structure saves code (typically one
AVR instruction) if no other instructions (s'AVR or AVR assembly) are within the given
structure, for example in a simple I/O wait loop:

WHILE %pinb,3 ; wait as long as port B bit 3 is set
ENDW

REPEAT ; wait ...
UNTIL NOT %pinb,3 ; ... until port B bit 3 is clear

And then while typing the s'AVR program you have one more time to think about what

should be tested for behind UNTIL

Generated AVR assembly code:

 ;01// WHILE %pinb,3 ; wait as long as port B bit 3 is set
_L1:

 SBIS pinb,3

 RJMP _L3

_L2:

 ;01// ENDW
 RJMP _L1

_L3:

 ;01// REPEAT ; wait ...
_L4:

 ;01// UNTIL NOT %pinb,3 ; ... until port B bit 3 is clear
 SBIC pinb,3

 RJMP _L4

_L5:

Incidentally, with these two structures, there is no difference in the generated code
between "no pain" and "efficient". This is - depending on the query - not always true.

After we got the conditional branching, the loops testing at the beginning and at the
end of the loop and even looping forever, we also would like to have a loop cycled for a
given number of cycles supplied before starting the loop...

Hint!

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 24

FOR – ENDF, Loop with initialized Loop Counter and Decrement Steps of 1

Syntax:

FOR RegisterAssign ; loop counter can be any regular AVR register
 StatementSequence
ENDF ; decrement and test loop counter for zero

 RegisterAssign can be done for the loop counter as follows:

 Register1 := Register2 ; copy another AVR register (including a port)
 Register := #Literal ; load a constant into the loop counter
 Register , the loop counter is initialized already

Register can be any of the AVR registers r0 though r31 or a symbol.

The identifier Register1 can be any of the AVR registers r0 though r31 or a symbol,
which means that the loop counter can be initialized with another register (Register2),
a constant (#Literal, no space after '#'), or even can have been initialized already (no
assignment ':=' then) before the FOR statement is reached.

For loading with a constant, however, for Register only the AVR registers R16..R31
are supported (an AVR property). In all other cases all the AVR registers R0 though
R31 are accepted.

If the FOR step size should be different from –1 then simply a REPEAT–UNTIL
structure could be used instead having the loop register initialized by any assembly
code and doing the stepping (increment or decrement) in assembly code too just
before the UNTIL statement.

Remarks:

If the loop counter is zero at the start of the FOR loop, the loop is looped 256 times
due to the 8-bit loop register, because the zero count is only checked after
decrementing at the end of the loop being looped through.

Instead of assigning #0, s'AVR also accepts #256 as the (only) non-8-bit constant
translated

26
 by s'AVR in #0 to initialize the loop counter.

s'AVR uses the double equal sign "==" for comparisons (like AVRASM2) and ":=" to
initialize FOR loop registers.

26 AVRASM2 would reject a constant 256 at this point. Other assemblers partially accept values modulo 256.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 25

Programming Tip:

To also use the less flexible registers R0 to R15 for FOR loops with constants, one can
load frequently used constants at the beginning of the program into any other AVR
register (R0 to R31) and then assign per:

FOR RegisterLower := RegisterConstant

Other examples:

FOR count := #3 ; value 3 assigned to AVR register 'count'
 rcall blink_led ; the LED subroutine will be called 3 times

ENDF

FOR loop := #loops ; this assignment will result in several errors,
 ; as 'loop' is a reserved s'AVR keyword!
 StatementSequence
ENDF

FOR lp_count ; register 'lp_count' is initialized already
 ; before the FOR structure is reached
 StatementSequence
ENDF

The loop number zero can be very helpful (but sometimes also a trap):

FOR lp_cnt := #0 ; loop count isn’t zero now, it’s 256 ...
 StatementSequence
ENDF ; ... because lp_cnt is tested at the end of
 ; the loop after decrementing lp_cnt

As noted earlier, for better understanding and with exactly the same result, you could
have taken lp_cnt: = #256 just as well (don't foget the # sign!):

FOR lp_cnt := #256 ; the number of loops is actually 256 ...
 StatementSequence

ENDF ; ..., because s'AVR initializes lp_cnt to 0

Generated "efficient" code for both cases (no original s'AVR statements and comments
shown):

 CLR lp_cnt

_L1:

 StatementSequence
 DEC lp_cnt

 BRNE _L1

If the current value of lp_cnt is used within StatementSequence, just remember that
the first value is 0, followed by 255, 254, 253 etc.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 26

s'AVR Options

Option "keep s'AVR statements in the output file"

Keeping the s'AVR statements in the generated output file is the default option. During
debugging by Atmel

®
 Studio or for documentation this is quite a helpful feature. If - for

any reasons – the pure original assembly lines and the s'AVR generated assembly code
are sufficient, the "keep..." option should be switched off. Correspondingly fewer lines
are generated in the output file. However, then also the comments are missing that are
included in the original s'AVR lines.

Option "keep warnings in the output file"

This default option keeps warnings of s'AVR in the output file.

Option "keep hints in the output file"

 This default option keeps hints of s'AVR in the output file.

Options for jump range = "Default Structure Segment Ranges"

• s'AVR 1.x always generated "no pain" code.

• As of s'AVR 2.0, either "efficient" (default) or "no pain" code can be generated (via
GUI or via command line, see below).

In both cases, short or medium jump range (.s or .m) can be enforced individually
for each structure (if the program permits this depending on the segment size).

• The range extensions are, of course, not backwards compatible with s'AVR 1.x.

Option for Label Prefix

From s'AVR 2.1 it is possible to specify which labels are generated by s'AVR, namely
_Axxxx through _Zxxxx, which is helpful if different program modules are written as

separate s'AVR source programs, then compiled individually and assembled together by
.INCLUDE the AVR assembler.

Collision with conditional and other Assembler Directives

Another (minor) problem is using s'AVR code together with various AVR assemblers
having different syntax rules. At the moment s'AVR is supporting the AVRASM2 from
Atmel

®
 and compatible ones.

If assembler directives or conditional assembly are not like the usual .IF, .ELSE, #IF,
#ELSE, etc., those might collide with s'AVR structured programming directives (which
should not be the case with AVRASM2).

To prevent collision with such directives (or any other assembly statements) simply a
question mark has to be inserted in front of the affected directive.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 27

s'AVR will check for those leading question marks and remove them without taking care
about the rest of the line itself. Afterwards the assembler can read the directive as
expected. This is a simple trick

27
, but very effective .

Example for conditional assembler directives within the s'AVR source code, which could
collide with s'AVR statements without having the questions marks:

?IF debug=1 ; ‘?’ automatically will be removed by s'AVR
 StatementSequence

?ELSE ; ‘?’ automatically will be removed by s'AVR
 StatementSequence

ENDIF ; this line would not matter, as s'AVR uses ENDI,
 ; but nevertheless ‘?ENDIF’ could be used too

Normally colliding conditional assembler directives should not happen so often within a
program compared to s'AVR directives (hopefully), so typing the additional question
marks should not hurt too much.

If those question marks are forgotten (but would be required) fortunately it will be
recognized by s'AVR as the begin/end pairs of directives do not match. Therefore
unbalanced program structures will be recognized and claimed by s'AVR.

Non-AVRASM2 Assembler: s'AVR:
(conditional assembly) (structured directive)

IF same syntax IF

 no equivalent ELSEIF
ELSE same syntax ELSE

ENDIF different syntax ENDI

In general the s'AVR error messages are showing quite good hints (in the compiled
output file!) to fix the problem.

Under Atmel Studio conveniently the line numbers are shown at least in the s'AVR
source file (must be selected under Options).

And s'AVR is designed to synchronize itself after detecting errors to prevent a bunch of
additional unexpected error messages which would be confusing only and s'AVR
doesn't stop compiling after any error is detected.

Collision with Assembler Macros

Since AVR macro directives start with a dot, there should be no conflicts with AVR
macros. However, s'AVR statements should not be used within macros because of the
global addresses being generated by s'AVR.

s'AVR will ignore AVR macros like all assembly lines or pass them unchanged into the
output file.

27 The question mark can not be misinterpreted as a "conditional operator" (from AVRASM 2.1), as this is not the first printable
character of a line.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 28

Comments

Comments by means of semicolons are treated by s'AVR as such and reissued in the
output file, unless they are part of s'AVR lines and these are to be suppressed by the
given s'AVR option.

Comments between /* and */ over several lines (as well supported by AVRASM2) are
not recognized as comments by s'AVR, which causes s'AVR statements within such
comment areas (but not within lines with /* and */) nevertheless be evaluated and
compiled (possibly also with corresponding errors, warning and hints).

But that does not hurt, as the AVR assembler continues to see comments between /*
and */. Only a few redundant labels are generated by s'AVR.

It is important, however, that in those lines with /* and */ there are no s'AVR statements
that would not be captured by s'AVR, which would lead to unbalanced structures
(together with an error message) if additional s'AVR statements are elsewhere in the /**/
comment section.

Addresses, Labels

As soon as s'AVR recognizes assembly instructions, comments and labels in a source
line of the input file, the remainder of this line is not examined for s'AVR statements.

In other words:

• In front of s'AVR statements, no label may be placed.
• Each AVR assembly instruction must have its own source line.

Multiple s'AVR Statements in a single Line

On the other hand, several s'AVR statements directly one after the other without
assembly instructions in between are allowed in a single line, even if this does not look
very clear = unstructured.

Sometimes it can be very compact and then save program lines.
However, for complex lines, it can happen that the original s'AVR line is output several
times as a comment. The generated AVR assembly code is normally still correct.

Examples:

LOOP ENDL ; endless loop (until Interrupt or Reset)

REPEAT UNTIL %Portx,4 ; wait until Bit 4 of Portx is set

WHILE rega <> regb EXITIF T ENDW ; wait until both registers are equal
 ; or the Transfer Bit is set

If an AVR assembly instruction is in the same line before, between or after s'AVR
directives, either an unbalanced structure is detected or the assembly instruction is
lost. Conclusion: In such cases better use clean structured programming!

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 29

Some basic Syntax Rules

As noted earlier, s'AVR has been designed to work with AVRASM2 and, if applicable,
the associated Atmel

®
 Studio development environment.

Therefore, the same rules apply to symbols, numbers and so on:

Identifiers (including addresses, symbols, registers, etc.) begin with a letter or
underscore and can be followed by additional letters, underscores, and numbers. The
addresses generated by s'AVR are either preset _Lxxxx or optional _Axxxx through
_Zxxxx and may not have been used elsewhere.

A single comma between two identifiers is mandatory (with no spaces in front of it) if
register bits or port bits are to be addressed.

Numbers can be decimal, hexadecimal ($ff or 0xff) and binary (0b1111_1111)
(the latter also with underscores for a clearer representation, but this is not accepted
by every AVR assembler). For register and port bits, only decimal numbers 0-7 (or
symbols) are allowed.

In addition for s'AVR:

Because in s'AVR-LITE all instructions are 8-bit operations, values >255 are displayed
as errors

28
 on both decimal, hexadecimal, and binary values.

Texts are recognized by s'AVR using simple quotes ('abc -!? ...'), but only single

byte characters are required for comparisons ('a'). s'AVR allows some freedom, which
eventually has to be checked by the assembler to be valid.

Ports are marked by prefix % (without spaces after the prefix!).

Constants (immediate literals) need a prefix # and have the formats #999, #$ff,
#0xff, #0b1111_1111 and #'x' (each without spaces after the prefix, not
accepted by every AVR assembler).

These forms are recognized as value zero:
#0, #$0, #$00, #0x0, #0x00, #0b0, #0b00, #0b000, #0b0000.
They result partly in optimized assembly code.

Other formats may be accepted by AVRASM2 and other AVR assemblers, but not by
s'AVR (and can then be used with assembly instructions).

These rules are mandatory in the context of s'AVR statements. If an AVR assembler
with a different syntax is used, the assembly instructions may be different without s'AVR
being affected, but the code generated by s'AVR must also be understood by the
assembler.

s'AVR-LITE only generates relative jumps via RJMP instruction and branch or skip

instructions to skip RJMP instructions, so s'AVR-LITE can be used on older ATtinys that

28 #256 is only accepted to initialize a FOR loop and taken as #0 in the generated code, making the FOR loop pass correctly 256x.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 30

do not support JMP. s'AVR does not use any macros but only generates native AVR
assembly instructions.

Command Line Interface

Command Line Call

s'AVR is supporting a DOS-style command line interface, which means that s'AVR also
can be started from a DOS window or other WINDOWS

®
 programs. Therefore the GUI

no longer is a must for s'AVR.

These command line calls need to meet the following rules:

• All parameters are passed to s'AVR by a preceding slash (/).

• The first parameter must be a valid and existing s'AVR source code file with
extension ".s", else s'AVR will be started in WINDOWS

®
 mode.

• Following the file name any number of additional parameters - separated by a
slash - are accepted, see command line syntax.

• If any parameters are conflicting, the last one will be used.

• Unknown parameters will be ignored.

• Error messages will be supplied within the generated output file (*.asm), also in a
separate error file (*.err, from version 2.21) in case any errors are detected
(otherwise such an error file does not exist).

• Upper and lower case letters and spaces in between are tolerated in any
combination and are even allowed within file names.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 31

Command Line Syntax:

s'AVR-Lite.exe /filename.s | /filename.savr [/nosavr | /keepsavr | /nowarn |
/keepwarn | /nohint | /keephint | {label_a .. label_z} | /listclp]

/filename.s vaild s'AVR source code file name (need extension ".s"
/filename.savr or extension ".savr")

/nosavr s'AVR statements are not shown in the output file
/keepsavr s'AVR statements are shown within the output file as comments
 (default)

/nowarn s'AVR warnings are not shown in the output file
/keepwarn s'AVR warnings are shown within the output file as comments
 (default)

/nohint s'AVR hints are not shown in the output file
/keephint s'AVR hints are shown within the output file as comments (default)

/label_a instead of the default Label Prefix _Lxxxx

... /label_z Label Prefixes _Axxxx though _Zxxxx will be used

/listclp besides the output file an information file called "sAVR_listclp.txt" is

listing all the parameters found and the corresponding compiler flags
(usually in the same directory from which s'AVR was started).

Command Line Call per Atmel
®
 Studio

 At the beginning the embedding of s'AVR into Atmel

®
 Studio was described in such a

way that the s'AVR program window appears when the embedded s'AVR tool is called,
so that you can select the respective source program '.s' in the corresponding project
directory when calling it up for the first time. If necessary, for every compiler run the
options being offered can be individually deselected. With this method, the s'AVR
program window can remain open in the background after the first call.

 If you also fill in the Atmel

®
 Studio 'Arguments' when setting up s'AVR as an external

tool, you can pass the source file name and, if necessary, s'AVR options via command
line call to s'AVR, but then without the possibility to intervening via the GUI, which even
does not show up.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 32

For default s'AVR options, the 'Tools Arguments' set-up would look like this:

 As far as possible the individual argument parameters take place without any spaces

between them. Otherwise, Atmel
®
 Studio will pass the parameters individually in single

quotes
29

.

 Several 'Arguments' are separated by another '/$' (in addition to the '/' of the s'AVR

parameters). 'Prompt for Arguments' remains deselected
30

.

 It is important that the file extension '.s' is specified as well, otherwise it may be

(depending on the currently active file) that '.asm' is passed to s'AVR instead of '.s' and
thus the wrong source file is compiled.

 After setting up properly with Atmel

®
 Studio, a single mouse click in the menu item

'Tools' is sufficient to start s'AVR and '.asm' is updated at lightning speed (recognizable
by date and time) without the s'AVR program window being visible or even being served
- provided you have saved the source program '.s' after any changes before the call.

 A '*' at the end of the filename displayed under Atmel

®
 Studio disappears after the

source file has been saved (a new and nice feature since a while)!

Linux

s'AVR can be called up and used under Linux using WINE.

By using scripts under Linux you can also compile and assemble complex projects with
a few mouse clicks. Specifically, from version 2.21 s'AVR generates a separate error file
with the extension '.err' in case any errors have been detected (only then), which lists
purely the error messages (if any) line by line.

From version 2.23 s'AVR is also able to directly read and compile Linux text files without
the intermediate step unix2dos31.

29 From version 1.04, s'AVR automatically removes double quotes from the command line.
30 To check the parameter passing for correctness, you can temporarily enable this option.
31 Windows and DOS are using CRLF at the end of a text line, while Unix and Linux are only using LF.

s'AVRs'AVRs'AVRs'AVR – Structured Assembly Programming for Atmel® AVR®

Eberhard Haug © 2020 s'AVR - Manual, Version 2.22 Page 33

Error Messages

s'AVR always stores error messages in the output file at the suspected error location
with reference to the line number of the source program and starts the line with
.ERROR, which forces AVRASM2 to stop and display the s'AVR error message under
Atmel

®
 Studio. If necessary, you can directly jump to the corresponding line in the

output file (not in the source program file) by a double click on the error message.
However, the error must be fixed in the source file (*.s) and not in the output file!

In case any errors are detected, all error messages will be written to a separate error
file (*.err, which is helpful when using scripts under Linux, e.g.).

Outlook

The limitation of the LITE version due to the RJMP instruction will be omitted in a 'full'
version (allowing optional JMP instructions or range extension '.l' respectively).

Also, a full version will support 16-bit operations with some of the s'AVR directives.

Apart from that, very complex AVR programs can be written in a well-structured
manner using s'AVR, and the "efficient" AVR code that can be generated with s'AVR
version 2 absolutely does not have to shy away from a comparison with a pure
assembler program written by an AVR guru.

Using "Label Prefix" (from s'AVR 2.1), you can also handle AVR programs consisting of
several s'AVR modules.

Depending on success and demand of the s'AVR users (and my free resources), future
s'AVR versions to be released - besides fixing bugs (if any) - might offer additional
features as follows:

 A 'full' version
 Unique labels generated from multiple source files (in the same directory)
 AND-OR combinations within conditions
 improved FOR statement (step size and sign)
 combined WHILE-UNTIL statement
 SWITCH-CASE statement
 any other proposals improving s'AVR

Although s'AVR has been carefully checked for proper function, programming errors
can never be ruled out due to the complexity of the program.

Strange error messages are always welcome by e-mail (if possible with an attached
source code snippet as a text file that causes the error and the s'AVR options used or
the associated output file).

Comments and suggestions to s'AVR are of course also welcome.

And now: Have fun and success with Atmel

®
 AVR

®
 combined with s'AVR!

(An index will follow occasionally.)

